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Introduction

e fp+, fp, and fi+, together with experimental leptonic decay rate
determinations, provide precise determinations of |V4|, |Vs| and
|Vaus|.

@ For higher precision than available with the asqtad action, we have
moved to the HISQ action.

o Advantage of HISQ is that charm may be treated with same action as
light quarks.

@ MILC's HISQ ensembles include ones with physical value of quark
masses — reducing or eliminating errors from chiral extrapolation.
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Introduction

m After determination of meson masses and amplitudes for each pair of
valence-quark masses, analysis follows two stages:
@ The physical-mass ensembles allow for a simple analysis without ChPT
> used to compute quark-mass ratios and fi+ /[t -

> also compute intermediate scale setting quantity Fpas (the decay
constant when valence masses are 0.4m?"¥® and the sea masses are

physical) and corresponding meson mass Mp4s.
@ Analyze heavy-light decay constants on all ensembles (physical and
unphysical mass) using ChPT.
> reduces statistical error.

> more control of continuum extrapolation.
> uses quark mass ratios, Fpss and Fpas/Mpss from stage one.
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Ensembles Used

@ 21 ensembles are used.
@ 14 ensembles have mg tuned close to its physical value.

[ B | mj/m | size | Niats | ~a (fm) L (fm) M,L M.(MeV) |
5.80 | 1/5 16 x 48 1020 0.15 2.38 3.8 314
5.80 | 1/10 243 x 48 1000 0.15 3.67 4.0 214
5.80 | 1/27 323 x 48 1000 0.15 4.83 3.2 130
6.00 | 1/5 243 x 64 1040 0.12 3.00 4.5 299
6.00 | 1/10 243 x 64 1020 0.12 2.89 3.2 221
6.00 | 1/10 323 x 64 1000 0.12 3.93 43 216
6.00 | 1/10 | 40%x64 | 1028 | 012 495 54 214
6.00 | 1/27 483 x 64 999 0.12 5.82 3.9 133
6.30 | 1/5 323 x 96 1011 0.09 2.95 4.5 301
6.30 | 1/10 483 x 96 1000 0.09 4.33 4.7 215
6.30 | 1/27 643 x 96 1031 0.09 5.62 3.7 130
6.72 | 1/5 483 x 144 | 1016 0.06 2.94 4.5 304
6.72 | 1/10 643 x 144 | 1166 0.06 3.79 4.3 224
6.72 | 1/27 963 x 192 | 583* 0.06 5.44 3.7 135
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Valence Masses for Charmed Decay Constant

e For light quark, about 10 masses ranging from m; to m,
@ For heavy quark, 2 masses close to the charm quark mass

Ié] my/m, light masses | heavy masses

(my /) (mq/me)
5.80 | 1/5 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
5.80 | 1/10 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
5.80 | 1/27 0.036,0.07,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.00 | 1/5 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.00 | 1/10 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.00 | 1/10 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.00 | 1/10 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.00 | 1/27 0.036,0.073,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.30 | 1/5 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.30 | 1/10 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.30 | 1/27 0.033,0.066,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.72 | 1/5 0.05,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.72 | 1/10 0.05,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.72 | 1/27 0.036,0.068,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
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Lattice Spacing and Valence Quark Mass Tuning
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Extrapolation to Continuum
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@ Black and red solid lines are from fits that only include physical mass ensembles.

@ Solid blue line is from fit that also includes blue squares for the physical light
quark mass.

@ Dotted blue line is from same fit, but for heavier sea-quark mass corresponding to
blue squares. (m;/m} = 0.1.)
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Results of Stage One (Preliminary)

@ Results for fx+/f.+ and quark mass ratios:

fK+/f7r+ = 1'1956(10)515&'3 t??daz extrap(lO)FV(5)EM
ms/ml = 27'352(51)Stat —20|a2 extrap(sg)FV(55)EM
mC/mS = 11-747(19)stat —32|a2 cxtrap(G)FV (27)EM

@ And intermediate scale setting quantities:

Fp4s = 153-9(9)stat -—'égla? cxtrap(lS)FV (5)EM
MP45 = 433~24(17)stat —33|a.2 extrap(2)FV (43)EM
Rpss = Fpas/Mpas = 0.35527(24)stat 11302 extrap (30)rv (24)EM

@ Finite Volume error comes from the FV error in fr which in turn comes from
ChPT. [A. Bazavov et al. PRD 110, 172003 (2013)]

@ EM error is from the residual error in our tuned values of quark masses. Uses input
€ = 0.84(21) (e characterizes violations of Dashen’s theorem) from MILC EM
project. (See talk by C. Bernard, Friday, 2:35 P.M., Pupin 428.)
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Scale Setting for Chiral Analysis

o Relative lattice scales are determined by Fj 4,

@ Has very small statistical errors, so the mistuning in sea quark masses
can be important.

@ So we adjust the data for mistunings in order to have a precise
calculation of aFj4s and amys.

@ Absolute scale comes from value of Fj4 in physical units (from stage
one) which comes ultimately from f.
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Adjustment for Mistuning in Sea Quark Masses

@ Light sea masses of the ensembles
available at a = 0.12 fm

@ Three ensembles inside the red ellipse
are used to calculate m; derivatives

@ Five ensembles inside the blue ellipse
are used to calculate ms derivatives
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Using the decoupling theorem, we can calculate effects of mistuning in the charm mass

analytically; result is in reasonable agreement with our numerical procedure.
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Charmed Decay Constant Data
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Vertical Axes:
®p = fpvMbp

Horizontal axes:
light valence mass

Two heavy valence
masses: m,, and
0.9m.,

For each color,
higher points: m.,
lower points: 0.9m.

Data for unphysical m, ensembles (and multiple volumes) not shown, but included in
fits. [366 data points total.]
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Central Chiral Fit
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Fit to chiral form for all-staggered heavy-light mesons worked out in C. Bernard and J.
K., PRD 88, 094017 (2013)
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Central Chiral Fit
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Our final statistical error is obtained using jackknife analysis, i.e., includes the statistical
error coming from inputs to the fit.
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Discussion of Systematic Errors

For continuum extrapolation/chiral interpolation errors, use two methods:

@ By straightforward comparison with various continuum extrapolations
of physical-mass ensemble results.

@ Self-contained error analysis:
o Have 18 acceptable chiral fits (p > 0.1), which:

@ keep or drop a = 0.15 fm ensembles.

@ add or drop higher order terms. (Number of fit parameters ranging
from 23 to 28.)

@ constrain higher order chiral terms and/or discretization terms with
priors, or leave them unconstrained.

@ determine relative value of the strong coupling a.s for discretization
terms from measured light-light pseudoscalar taste splittings, or
determine it from plaquette.

@ various ways of fixing or determining the LECs f, g» and B.

o Have 6 versions of inputs (quark masses, Fj4, in physical units from f
and R,4,) from physical-mass ensemble results.
e Histogram results of 108 composite analyses.
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Histogram
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@ The central fit is chosen deliberately to be near the centers of the histograms.

@ We include the results of physical-mass ensemble analyses, performed in stage one;
red bars.

@ Conservatively we take the full difference as the systematic error of extrapolation
to the continuum.
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Results (Preliminary)

@ Results:
for = 212.6 £ 04gar 7702 extrap £ 0-36v £+ 0.1pm + 03¢, ppc MeV
fo. = 249.0 £ 0.3xat 71402 extrap £ 0.26v £ 0.1gum £ 0.4, ppc MeV
st/fD+ = 1'1712(10)Stat(t§§)a2 cxtrap(3)FV(6)EM

@ Repeating the result for fi+/f.+ and quark mass ratios from the
physical-ensemble analysis (stage one):

fK*/fw* = 1'1956(10)5'3&'3 t?i|a2 extrap(lO)FV(5)EM
ms/ml = 27352(51)Stat tgg'az extrap(sg)FV(55)EM
me/ms = 1L747(19)star 5502 extrap (6)rv (27)ena
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Comparison to Previous Work
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Unitarity Tests of the CKM Matrix (Preliminary)

First row Second row
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Taking |V, 4| from nuclear 3 decay, we obtain [Ves| = 1.010(18)expt (5)LQcp (6)EM
|Vus| = O~22487(29)BR(K22)(QO)EM(sl)LQCD(5)Vud Errors for | V4| and |Vis| are mostly from experiment

EM errors are from hadronic structure-dependent EM effects (from matching of QCD+QED to QCD).
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Thank You for Your Attention!

Lattice 2014, New York, USA 19 /21



Back-up Slides
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Finite Volume Effects
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